
319

Chapter 12

Multiplayer Gameplay

In the previous chapter, we saw how the WebSocket API could be used with a Node.js server to implement a simple
client–server networking architecture. We used this to build a simple game lobby, so two players can now join a game
room on a server and start a multiplayer game against each other.

In this chapter, we will continue where we left off at the end of Chapter 11 and implement a framework for the
actual multiplayer gameplay using the lock-step networking model. We will look at ways to handle typical game
networking problems such as latency and game synchronization. We will then use the sendCommand() architecture
that we designed in earlier chapters to ensure that the players’ commands are executed on both the browsers so
that the games stay in sync. We will then implement winning and losing in the game by using triggers like we did in
Chapter 10. Finally, we will implement a chat system for our game.

Let’s get started.

The Lock-Step Networking Model
So far, we used the Node.js server to communicate simple messages such as the game lobby status and joining or
leaving a room. These messages were independent of each other, and one player’s messages did not affect another
player. However, when it comes to the gameplay, this communication is going to get a little more complex.

One of the most important challenges in building a multiplayer game is to ensure that all the players are in sync.
This means every time a change occurs in any of the games (for example, a player issues a move or attack command),
the change is communicated to the other players so that they too can make the same change.

What is even more important is that the action or change occurs at the same moment in both the players’
machines. If there is a delay in executing these changes, subtle differences in unit positions will eventually build up,
resulting in noticeable divergences between the game states.

For example, a unit that is just half a second late in arriving at an enemy location might avoid an enemy attack
and survive in one browser, while the same unit may have been destroyed on the other player’s browser. The moment
something like this happens, the two players are now playing two completely different games instead of the same one.

To ensure that both players are completely in sync, we will implement an architecture known as the lock-step
networking model. Both players will start with the same game state. When the player gives a unit a command, we will
send the command to the server instead of executing it immediately. The server will then send the same command to
the connected players with instructions on when to execute the command. Once the players receive the command,
they will execute it at the same time, ensuring that the games stay synchronized.

The server will achieve this behavior by running its own game timer, at 10 clock ticks per second. When a player
sends the server a command, the server will record the clock tick when it received the command. The server will then
send the command to the players, while specifying the game tick to execute the command. The players in turn will
keep track of the current game tick and execute the command at the right tick.

One thing to remember is that since the server needs to execute the commands for all the players at the same
time, it will need to wait for the commands from all the players to arrive before stepping ahead to the next game tick,
which is why it’s called lock-step.

Chapter 12 ■ Multiplayer GaMeplay

320

This process is further complicated by the fact that network latency can cause communication delays, with
messages sometimes taking several hundred milliseconds to travel between client and server. Our networking model
will need to measure and take this latency into account to ensure smooth gameplay.

We will start by modifying our game code to measure the network latency for each player when the player first
connects to the server.

Measuring Network Latency
For our purposes, we will define the latency as the time taken by a message to travel from the server to the client. We
will measure this latency by sending several messages back and forth between the server and the client and then
taking an average of the time used for each trip.

We will start by defining two new methods for measuring the latency inside server.js, as shown in Listing 12-1.

Listing 12-1. Methods for Measuring Network Latency (server.js)

function measureLatency(player){
 var connection = player.connection;
 var measurement = {start:Date.now()};
 player.latencyTrips.push(measurement);
 var clientMessage = {type:"latency_ping"};
 connection.send(JSON.stringify(clientMessage));
}
function finishMeasuringLatency(player,clientMessage){
 var measurement = player.latencyTrips[player.latencyTrips.length-1];
 measurement.end = Date.now();
 measurement.roundTrip = measurement.end - measurement.start;
 player.averageLatency = 0;
 for (var i=0; i < player.latencyTrips.length; i++) {
 player.averageLatency += measurement.roundTrip/2;
 };
 player.averageLatency = player.averageLatency/player.latencyTrips.length;
 player.tickLag = Math.round(player.averageLatency * 2/100)+1;
 console.log("Measuring Latency for player. Attempt", player.latencyTrips.length, "-
Average Latency:",player.averageLatency, "Tick Lag:", player.tickLag);
}

In the measureLatency() method, we first create a new measurement object with a start property set to the
current time and add the object to the player.latencyTrips array. We then send a message of type latency_ping to
the player. The player will respond to this message by sending back a message of type latency_pong.

In the finishMeasuringLatency() method, we take the last measurement from the player.latencyTrips
array and set its end property to the current time and its roundTrip property to the difference between the end and
start times.

We then calculate the average latency for the player by adding up all the roundTrip values and then dividing the
sum by the number of trips.

Finally, we use averageLatency to calculate a tickLag property for the player. This is the number of ticks after
sending a command that the player can be safely expected to have received the command. The heuristic uses a value
that is 200 percent of the typical latency, with a minimum value of one game tick.

You can play around with this heuristic and fine-tune it for accuracy if you like; however, for the purposes of
smooth gameplay, it is safer to have a high value. It has been found that players are able to get used to network lag
and automatically adjust for it as long as the delay is consistent. Any time the lag varies too much, players tend to get
frustrated by it.

Chapter 12 ■ Multiplayer Gameplay

321

Next we will modify the multiplayer object’s handleWebSocketMessage() method to respond to the server’s
latency_ping message, as shown in Listing 12-2.

Listing 12-2.  Responding to latency_ping with a latency_pong (multiplayer.js)

handleWebSocketMessage:function(message){
 var messageObject = JSON.parse(message.data);
 switch (messageObject.type){
 case "room_list":
 multiplayer.updateRoomStatus(messageObject.status);
 break;
 case "joined_room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;
 case "init_level":
 multiplayer.initMultiplayerLevel(messageObject);
 break;
 case "start_game":
 multiplayer.startGame();
 break;
 case "latency_ping":
 multiplayer.sendWebSocketMessage({type:"latency_pong"});
 break;
 }
},

When the browser receives a latency_ping message from the server, it immediately sends back a latency_pong
message to the server.

Finally, we will modify the request event handler for the websocket object on the server to start measuring
latency when a player connects and to finish measuring latency when the player sends back a latency_pong response,
as shown in Listing 12-3.

Listing 12-3.  Starting and Finishing Latency Measurement (server.js)

wsServer.on('request',function(request){
 if(!connectionIsAllowed(request)){
 request.reject();
 console.log('Connection from ' + request.remoteAddress + ' rejected.');
 return;
 }
  
 var connection = request.accept();
 console.log('Connection from ' + request.remoteAddress + ' accepted.');
  
 // Add the player to the players array
 var player = {
 connection:connection,
 latencyTrips:[]
 }
 players.push(player);
  

Chapter 12 ■ Multiplayer Gameplay

322

 // Send a fresh game room status list the first time player connects
 sendRoomList(connection);
  
 // Measure latency for player
 measureLatency(player);
  
 // On Message event handler for a connection
 connection.on('message', function(message) {
 if (message.type === 'utf8') {
 var clientMessage = JSON.parse(message.utf8Data);
 switch (clientMessage.type){
 case "join_room":
 var room = joinRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 if(room.players.length == 2){
 initGame(room);
 }
 break;
 case "leave_room":
 leaveRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 break;
 case "initialized_level":
 player.room.playersReady++;
 if (player.room.playersReady==2){
 startGame(player.room);
 }
 break;
 case "latency_pong":
 finishMeasuringLatency(player,clientMessage);
 // Measure latency at least thrice
 if(player.latencyTrips.length<3){
 measureLatency(player);
 }
 break;
 }
 }
 });
  
 connection.on('close', function(reasonCode, description) {
 console.log('Connection from ' + request.remoteAddress + ' disconnected.');
 for (var i = players.length - 1; i >= 0; i--){
 if (players[i]==player){
 players.splice(i,1);
 }
 };
 
 // If the player is in a room, remove him from room and notify everyone
 if(player.room){
 var status = player.room.status;
 var roomId = player.room.roomId;
  

Chapter 12 ■ Multiplayer Gameplay

323

 leaveRoom(player,roomId);
  
 sendRoomListToEveryone();
 }
 });
});

We start by adding a latencyTrips array to the player object and calling measureLatency() once the player has
connected.

We then modify the message handler to handle messages of type latency_pong. When the player responds
to a latency_ping message with a latency_pong message, we call the finishMeasuringLatency() method
that we defined earlier. We then check whether we have at least three latency measurements and, if not, call the
measureLatency() method again.

Now, if you start the server and run the game, the server will make three attempts to measure the latency.
You can see the Websocket communication using the browser’s developer console, as shown in Figure 12-1.

Figure 12-1.  Observing the websocket communication in the developer console

Now that we have measured latency for the players, it’s time to implement sending commands.

Sending Commands
Once the game starts, we will maintain a game clock with a game tick number on both the server and the clients.
When a player sends a command to the server, we will send the command back to the clients with instructions to
execute the command at a later tick calculated by using tickLag.

We will start by modifying the multiplayer object’s handleWebSocketMessage() method to receive commands
within a game_tick message, as shown in Listing 12-4.

Listing 12-4.  Receiving Commands in game_tick Message (multiplayer.js)

handleWebSocketMessage:function(message){
 var messageObject = JSON.parse(message.data);
 switch (messageObject.type){
 case "room_list":
 multiplayer.updateRoomStatus(messageObject.status);
 break;

Chapter 12 ■ Multiplayer Gameplay

324

 case "joined_room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;
 case "init_level":
 multiplayer.initMultiplayerLevel(messageObject);
 break;
 case "start_game":
 multiplayer.startGame();
 break;
 case "latency_ping":
 multiplayer.sendWebSocketMessage({type:"latency_pong"});
 break;
 case "game_tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;
 }
},

When we receive a game_tick message from the server containing a list of commands and the tick number on
which the commands need to be executed, we save the commands in the multiplayer.commands array and then
update the lastReceivedTick variable.

Next we will implement the game loop and handle sending commands, as shown in Listing 12-5.

Listing 12-5.  Sending Commands from the Client (multiplayer.js)

startGame:function(){
 fog.initLevel();
 game.animationLoop();
 multiplayer.animationInterval = setInterval(multiplayer.tickLoop, game.animationTimeout);
 game.start();
},
sendCommand:function(uids,details){
 multiplayer.sentCommandForTick = true;
 multiplayer.sendWebSocketMessage({type:"command",uids:uids,
details:details,currentTick:multiplayer.currentTick});
},
tickLoop:function(){
 // if the commands for that tick have been received
 // execute the commands and move on to the next tick
 // otherwise wait for server to catch up
 if(multiplayer.currentTick <= multiplayer.lastReceivedTick){
 var commands = multiplayer.commands[multiplayer.currentTick];
 if(commands){
 for (var i=0; i < commands.length; i++) {
 game.processCommand(commands[i].uids,commands[i].details);
 };
 }
 

Chapter 12 ■ Multiplayer Gameplay

325

 game.animationLoop();

 // In case no command was sent for this current tick, send an empty command to the server
 // So that the server knows that everything is working smoothly
 if (!multiplayer.sentCommandForTick){
 multiplayer.sendCommand();
 }
 multiplayer.currentTick++;
 multiplayer.sentCommandForTick = false;
 }
},

First, in the startGame() method, we set an interval to call the tickLoop() method every 100 milliseconds when
the game starts.

Next, in the sendCommand() method, we send a message of type command to the server with the details of the
command as well as the UIDs for the command.

The command message also contains the current game tick. This way, the command message acts as a heartbeat
to let the server know what game tick the client is currently on. We also set the sendCommandForTick flag to true.

In the tickLoop() method, we check to see whether we have received commands for the current tick. In case we
have not, we will wait for the commands to arrive from the server.

If we have received the commands for the tick, we process all the received commands using the
game.processCommand() method. We then call the game.animationLoop() method.

In case we have not sent out any commands so far, we also send an empty command to the server.
Finally, we increment the game tick number and clear the sentCommandForTick flag.
Now that the client has been modified to send and receive commands, we will modify the server to handle these

commands as well.
We will start by modifying the message event handler on the server to handle messages of type command, as shown

in Listing 12-6.

Listing 12-6.  Handing Messages of Type command (server.js)

// On Message event handler for a connection
connection.on('message', function(message) {
 if (message.type === 'utf8') {
 var clientMessage = JSON.parse(message.utf8Data);
 switch (clientMessage.type){
 case "join_room":
 var room = joinRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 if(room.players.length == 2){
 initGame(room);
 }
 break;
 case "leave_room":
 leaveRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 break;
 case "initialized_level":
 player.room.playersReady++;
 if (player.room.playersReady==2){
 startGame(player.room);
 }

Chapter 12 ■ Multiplayer Gameplay

326

 break;
 case "latency_pong":
 finishMeasuringLatency(player,clientMessage);
 // Measure latency at least thrice
 if(player.latencyTrips.length<3){
 measureLatency(player);
 }
 break;
 case "command":
 if (player.room && player.room.status=="running"){
 if(clientMessage.uids){
 player.room.commands.push({uids:clientMessage.uids,
details:clientMessage.details});
 }
 player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;
 }
 break;
 }
 }
});

When the server receives a message of type command, we check whether the message has UIDs. If so, we store the
commands in the room’s commands array. If not, the message is just a heartbeat message with no command that needs
saving. We then update the lastTickConfirmed property for the player.

Next, we will modify the startGame() method in server.js, as shown in Listing 12-7.

Listing 12-7.  Modifying the startGame() Method (server.js)

function startGame(room){
 console.log("Both players are ready. Starting game in room",room.roomId);
 room.status = "running";
 sendRoomListToEveryone();
 // Notify players to start the game
 sendRoomWebSocketMessage(room,{type:"start_game"});
  
 room.commands = [];
 room.lastTickConfirmed = {"blue":0,"green":0};
 room.currentTick = 0;
  
 // Calculate tick lag for room as the max of both player's tick lags
 var roomTickLag = Math.max(room.players[0].tickLag,room.players[1].tickLag);
  
 room.interval = setInterval(function(){
 // Confirm that both players have send in commands for up to present tick
 if(room.lastTickConfirmed["blue"] >= room.currentTick &&
room.lastTickConfirmed["green"] >= room.currentTick){
 // Commands should be executed after the tick lag
 sendRoomWebSocketMessage(room,{type:"game_tick",
tick:room.currentTick+roomTickLag, commands:room.commands});
 room.currentTick++;
 room.commands = [];

Chapter 12 ■ Multiplayer Gameplay

327

 } else {
 // One of the players is causing the game to lag. Handle appropriately
 if(room.lastTickConfirmed["blue"] < room.currentTick){
 console.log ("Room",room.roomId,"Blue is lagging on
Tick:",room.currentTick,"by", room.currentTick-room.lastTickConfirmed["blue"]);
 }
 if(room.lastTickConfirmed["green"] < room.currentTick){
 console.log ("Room",room.roomId,"Green is lagging on Tick:",
room.currentTick, "by", room.currentTick-room.lastTickConfirmed["green"]);
 }
 }
 },100);
}

When the game starts, we initialize the commands array, currentTick, and the lastTickConfirmed object for the
room. We then calculate the tick lag for the room as the maximum of the tick lag for the two players and save it in the
roomTickLag variable.

We then start the timer loop for the game using setInterval(). Within this loop, we first check that both players
have caught up with the server by sending commands for the present game tick.

If so, we send out a game_tick message to the message to the players with a list of commands and ask them to
execute the commands roomTickLag ticks after the current tick. This way, both the players will execute the command
at the same time, even if the message takes a little time to reach the players.

We then clear the commands array on the server and increase the currentTick variable for the room.
If the server hasn’t received confirmation for the current tick from both the clients, we log a message to the

console and do not increment the tick. You can modify this code to check whether the server has been waiting for a
long time and, if so, send the players a notification that the server is experiencing lag.

If you start the server and run the game on two different browsers, you should be able to command the units and
have your first multiplayer battle, as shown in Figure 12-2.

Figure 12-2.  Commanding units in a multiplayer battle

The multiplayer portion of our game is now working. Right now both the browsers are on the same machine. You
can move the server code onto a separate Node.js machine and modify the multiplayer object to point to this new
server instead of localhost. If you want to move to a public server, you can find several hosting providers that provide
Node.js support such as Nodester (http://nodester.com) and Nodejitsu (http://nodejitsu.com/).

Now that we have implemented sending commands, we will implement ending the multiplayer game.

http://nodester.com
http://nodejitsu.com/

Chapter 12 ■ Multiplayer Gameplay

328

Ending the Multiplayer Game
The multiplayer game can be ended in two ways. The first is if one of the players defeats the other by satisfying the
requirements for the level. The other is if a player either closes the browser or gets disconnected from the server.

Ending the Game When a Player Is Defeated
We will implement ending the game using triggered events just like we did in Chapter 10. This gives us the flexibility
to design different types of multiplayer levels such as capture the flag or death match. We are limited only by our
imagination.

For now, we will make the level end when one side is completely destroyed. We will start by creating a simple
triggered event in the multiplayer map, as shown in Listing 12-8.

Listing 12-8.  Trigger for Ending the Multiplayer Level (maps.js)

/* Conditional and Timed Trigger Events */
"triggers":[
 /* Lose if not even one item is left */
 {"type":"conditional",
 "condition":function(){
 for (var i=0; i < game.items.length; i++) {
 if(game.items[i].team == game.team){
 return false;
 }
 };
 return true;
 },
 "action":function(){
 multiplayer.loseGame();
 }
 },
]

In the conditional trigger, we check whether the game.items array contains at least one item belonging to the
player. If the player has no items left, we call the loseGame() method.

Next we will add the loseGame() and endGame() methods to the multiplayer object, as shown in Listing 12-9.

Listing 12-9.  Adding loseGame() and endgame() Methods (multiplayer.js)

// Tell the server that the player has lost
loseGame:function(){
 multiplayer.sendWebSocketMessage({type:"lose_game"});
},
endGame:function(reason){
 game.running = false
 clearInterval(multiplayer.animationInterval);
 // Show reason for game ending, and on OK, exit multiplayer screen
 game.showMessageBox(reason,multiplayer.closeAndExit);
}

Chapter 12 ■ Multiplayer Gameplay

329

In the loseGame() method, we send a message of type lose_game to the server to let it know that the player has
lost the game.

In the endGame() method, we clear the game.running flag and the multiplayer.animationInterval interval.
We then show a message box with the reason for ending the game and finally call the multiplayer.closeAndExit()
method once the OK button on the message box is clicked.

Next, we will define a new endGame() method in server.js, as shown in Listing 12-10.

Listing 12-10.  The Server endGame() Method (server.js)

function endGame(room,reason){
 clearInterval(room.interval);
 room.status = "empty";
 sendRoomWebSocketMessage(room,{type:"end_game",reason:reason})
 for (var i = room.players.length - 1; i >= 0; i--){
 leaveRoom(room.players[i],room.roomId);
 };
 sendRoomListToEveryone();
}

We start by clearing the interval for the game loop. We then send the end_game message to all the players in the
room with the reason provided as a parameter. We then set the room to empty and remove all the players from the
room using the leaveRoom() method. Finally, we send the updated room list to all connected players.

Next, we will modify the message event handler on the server to handle messages of type lose_game, as shown
in Listing 12-11.

Listing 12-11.  Handing Messages of Type lose_game (server.js)

// On Message event handler for a connection
connection.on('message', function(message) {
 if (message.type === 'utf8') {
 var clientMessage = JSON.parse(message.utf8Data);
 switch (clientMessage.type){
 case "join_room":
 var room = joinRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 if(room.players.length == 2){
 initGame(room);
 }
 break;
 case "leave_room":
 leaveRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 break;
 case "initialized_level":
 player.room.playersReady++;
 if (player.room.playersReady==2){
 startGame(player.room);
 }
 break;
 case "latency_pong":
 finishMeasuringLatency(player,clientMessage);

Chapter 12 ■ Multiplayer GaMeplay

330

 // Measure latency at least thrice
 if(player.latencyTrips.length<3){
 measureLatency(player);
 }
 break;
 case "command":
 if (player.room && player.room.status=="running"){
 if(clientMessage.uids){
 player.room.commands.push({uids:clientMessage.uids,
details:clientMessage.details});
 }
 player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;
 }
 break;
 case "lose_game":
 endGame(player.room, "The "+ player.color +" team has been defeated.");
 break;
 }
 }
});

When we receive a lose_game message from one of the players, we call the endGame() method with the reason for
ending the game.

Finally, we will modify the multiplayer object’s handleWebSocketMessage() method to receive messages of type
end_game, as shown in Listing 12-12.

Listing 12-12. Receiving Messages of Type end_game (multiplayer.js)

handleWebSocketMessage:function(message){
 var messageObject = JSON.parse(message.data);
 switch (messageObject.type){
 case "room_list":
 multiplayer.updateRoomStatus(messageObject.status);
 break;
 case "joined_room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;
 case "init_level":
 multiplayer.initMultiplayerLevel(messageObject);
 break;
 case "start_game":
 multiplayer.startGame();
 break;
 case "latency_ping":
 multiplayer.sendWebSocketMessage({type:"latency_pong"});
 break;
 case "game_tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;

Chapter 12 ■ Multiplayer Gameplay

331

 case "end_game":
 multiplayer.endGame(messageObject.reason);
 break;
 }
},

When the client receives an end_game message, we call multiplayer.endGame() with the reason provided in
the message.

If you start the server and run the game, you should see a message box when one of the players destroys all of the
other players units and buildings, as shown in Figure 12-3.

Figure 12-3.  Game ends when one player defeats the other

If you click the Okay button, you should be taken back to the main game menu. You will notice that when a game
ends, the lobby automatically shows the room as empty so that the next set of players can join the room.

We will also end the game when a player closes the browser or is disconnected from the server.

Ending the Game When a Player Is Disconnected
Whenever a player disconnects from the server while playing a game, it will trigger a websocket close event on the
server. We will handle this disconnect by modifying the close event handler on the server, as shown in Listing 12-13.

Listing 12-13.  Handling Player Disconnects (server.js)

connection.on('close', function(reasonCode, description) {
 console.log('Connection from ' + request.remoteAddress + ' disconnected.');
  

Chapter 12 ■ Multiplayer Gameplay

332

 for (var i = players.length - 1; i >= 0; i--){
 if (players[i]==player){
 players.splice(i,1);
 }
 };
  
 // If the player is in a room, remove him from room and notify everyone
 if(player.room){
 var status = player.room.status;
 var roomId = player.room.roomId;
 // If the game was running, end the game as well
 if(status=="running"){
 endGame(player.room, "The "+ player.color +" player has disconnected.");
 } else {
 leaveRoom(player,roomId);
 }
 sendRoomListToEveryone();
 }
});

If the player is in a room, we remove the player from the room and send the updated room list to everyone. If the
game was running, we also call the endgame() method with the reason that the player has disconnected.

If you start the server and begin a multiplayer game, you should see a disconnect message when either of the
players gets disconnected, as shown in Figure 12-4.

Figure 12-4.  Message shown when a player gets disconnected

Chapter 12 ■ Multiplayer Gameplay

333

Clicking the Okay button will take you back to the main menu screen. Again, the lobby automatically shows the
room as empty so that the next set of players can join the room.

The last thing we will handle is ending the game if a connection error occurs and the connection is lost.

Ending the Game When a Connection Is Lost
Whenever the client gets disconnected from the server or an error occurs, it will trigger either an error or a close
event on the client. We will handle this by implementing these event handlers within the start() method of the
multiplayer object, as shown in Listing 12-14.

Listing 12-14.  Handling Connection Errors (multiplayer.js)

start:function(){
 game.type = "multiplayer";
 var WebSocketObject = window.WebSocket || window.MozWebSocket;
 if (!WebSocketObject){
 game.showMessageBox("Your browser does not support WebSocket. Multiplayer will not work.");
 return;
 }
 this.websocket = new WebSocketObject(this.websocket_url);
 this.websocket.onmessage = multiplayer.handleWebSocketMessage;
 // Display multiplayer lobby screen after connecting
 this.websocket.onopen = function(){
 // Hide the starting menu layer
 $('.gamelayer').hide();
 $('#multiplayerlobbyscreen').show();
 }
  
 this.websocket.onclose = function(){
 multiplayer.endGame("Error connecting to server.");
 }
  
 this.websocket.onerror = function(){
 multiplayer.endGame("Error connecting to server.");
 }
},

For both the events, we call the endGame() method with an error message. If you run the game now and shut
down the server to re-create a server disconnect, you should see an error message, as shown in Figure 12-5.

Chapter 12 ■ Multiplayer Gameplay

334

If there is a problem with the connection while the player is either in the lobby or playing a game, the browser will
now display this error message and then return to the main game screen.

A more robust implementation would include trying to reconnect to the server within a timeout period and then
resuming the game. We can achieve this by passing a reconnect message with a unique player ID to the server and
handling the message appropriately on the server side. However, we will stick with this simpler implementation for
our game.

Before we wrap up the multiplayer portion of our game, we will implement one last feature in our game: player chat.

Implementing Player Chat
We will start by defining an input box for chat messages inside the gameinterfacescreen layer in index.html, as
shown in Listing 12-15.

Listing 12-15.  Adding Input Box for Chat Message (index.html)

<div id="gameinterfacescreen" class="gamelayer">
 <div id="gamemessages"></div>
 <div id="callerpicture"></div>
 <div id="cash"></div>
 <div id="sidebarbuttons">
 <input type="button" id="starportbutton" title = "Starport">
 <input type="button" id="turretbutton" title = "Turret">
 <input type="button" id="placeholder1" disabled>
 

Figure 12-5.  Message shown in case of a connection error

Chapter 12 ■ Multiplayer Gameplay

335

 <input type="button" id="scouttankbutton" title = "Scout Tank">
 <input type="button" id="heavytankbutton" title = "Heavy Tank">
 <input type="button" id="harvesterbutton" title = "Harvester">
 
 <input type="button" id="chopperbutton" title = "Copter">
 <input type="button" id="wraithbutton" title = "Wraith">
 <input type="button" id="placeholder2" disabled>
  
 </div>
 <canvas id="gamebackgroundcanvas" height="400" width="480"></canvas>
 <canvas id="gameforegroundcanvas" height="400" width="480"></canvas>
 <input type="text" id="chatmessage"></input>
</div>

Next we will add some extra styles for the chat message input to styles.css, as shown in Listing 12-16.

Listing 12-16.  Styles for Chat Message Input Box (styles.css)

#chatmessage{
 position:absolute;
 top:460px;
 width:479px;
 background:rgba(0,255,0,0.1);
 color:green;
 border:1px solid green;
 display:none;
}
#chatmessage:focus {
 outline:none;
}

Next we will add an event handler for keydown events inside multiplayer.js, as shown in Listing 12-17.

Listing 12-17.  Handing Keydown Events to Handle the Chat Message Input (multiplayer.js)

$(window).keydown(function(e){
 // Chatting only allowed in multiplayer when game is running
 if(game.type != "multiplayer" || !game.running){
 return;
 }
  
 var keyPressed = e.which;
 if (e.which == 13){ // Enter key pressed
 var isVisible = $('#chatmessage').is(':visible');
 if (isVisible){
 // if chat box is visible, pressing enter sends the message and hides the chat box
 if ($('#chatmessage').val()!= ''){

 multiplayer.sendWebSocketMessage({type:"chat",message:$('#chatmessage').val()});
 $('#chatmessage').val('');
 }
 $('#chatmessage').hide();
 } else {

Chapter 12 ■ Multiplayer Gameplay

336

 // if chat box is not visible, pressing enter shows the chat box
 $('#chatmessage').show();
 $('#chatmessage').focus();
 }
 e.preventDefault();
 } else if (e.which==27){ // Escape key pressed
 // Pressing escape hides the chat box
 $('#chatmessage').hide();
 $('#chatmessage').val('');
 e.preventDefault();
 }
});

Whenever a key is pressed, we first confirm that the game is a multiplayer game and it is running and exit if it is
not. If the key pressed is the Enter key (key code 13), we first check whether the chatmessage input box is visible. If
it is visible, we send the contents of the message box to the server inside a message of type chat. We then clear the
contents of the input box and hide it. If the input box is not already visible, we display the chat input box and set the
focus to it. If the key pressed is Escape (key code 27), we clear the contents of the input box and hide it. Next, we will
modify the message event handler on the server to handle messages of type chat, as shown in Listing 12-18.

Listing 12-18.  Handing Messages of Type chat (server.js)

// On Message event handler for a connection
connection.on('message', function(message) {
 if (message.type === 'utf8') {
 var clientMessage = JSON.parse(message.utf8Data);
 switch (clientMessage.type){
 case "join_room":
 var room = joinRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 if(room.players.length == 2){
 initGame(room);
 }
 break;
 case "leave_room":
 leaveRoom(player,clientMessage.roomId);
 sendRoomListToEveryone();
 break;
 case "initialized_level":
 player.room.playersReady++;
 if (player.room.playersReady==2){
 startGame(player.room);
 }
 break;
 case "latency_pong":
 finishMeasuringLatency(player,clientMessage);
 // Measure latency at least thrice
 if(player.latencyTrips.length<3){
 measureLatency(player);
 }
 break;

Chapter 12 ■ Multiplayer Gameplay

337

 case "command":
 if (player.room && player.room.status=="running"){
 if(clientMessage.uids){
 player.room.commands.push({uids:clientMessage.uids,
details:clientMessage.details});
 }
 player.room.lastTickConfirmed[player.color] = clientMessage.currentTick +
player.tickLag;
 }
 break;
 case "lose_game":
 endGame(player.room, "The "+ player.color +" team has been defeated.");
 break;
 case "chat":
 if (player.room && player.room.status=="running"){
 var cleanedMessage = clientMessage.message.replace(/[<>]/g,"");
 sendRoomWebSocketMessage(player.room,{type:"chat", from:player.color,
message:cleanedMessage});
 }
 break;
 }
 }
});

When we receive a message of type chat from a player, we send back a message of type chat to all the players in
the room, with a from property set to the player’s color and a message property set to the message we just received.

Ideally, you should validate the chat message so that a player cannot send malicious HTML and script tags inside
chat messages. For now, we use a simple regular expression to strip out any HTML tags from the message before
sending it back.

Finally, we will modify the multiplayer object’s handleWebSocketMessage() method to receive messages of type
chat, as shown in Listing 12-19.

Listing 12-19.  Receiving Messages of Type chat (multiplayer.js)

handleWebSocketMessage:function(message){
 var messageObject = JSON.parse(message.data);
 switch (messageObject.type){
 case "room_list":
 multiplayer.updateRoomStatus(messageObject.status);
 break;
 case "joined_room":
 multiplayer.roomId = messageObject.roomId;
 multiplayer.color = messageObject.color;
 break;
 case "init_level":
 multiplayer.initMultiplayerLevel(messageObject);
 break;
 case "start_game":
 multiplayer.startGame();
 break;

Chapter 12 ■ Multiplayer Gameplay

338

 case "latency_ping":
 multiplayer.sendWebSocketMessage({type:"latency_pong"});
 break;
 case "game_tick":
 multiplayer.lastReceivedTick = messageObject.tick;
 multiplayer.commands[messageObject.tick] = messageObject.commands;
 break;
 case "end_game":
 multiplayer.endGame(messageObject.reason);
 break;
 case "chat":
 game.showMessage(messageObject.from,messageObject.message);
 break;
 }
},

If you start the server and play a multiplayer game now, you should be able to send chat messages from one
player to the other, as shown in Figure 12-6.

Figure 12-6.  Chat between players during multiplayer

We now have a working player chat for multiplayer. With this last change, we can consider our multiplayer game
wrapped up.

Summary
We have come a long way over the course of this book. We started by looking at the basic elements of HTML5 needed
to build games, such as drawing and animating on the canvas, playing audio, and using sprite sheets.

We then used these basics to build a Box2D physics engine–based game called Froot Wars. In the process, we
looked at creating splash screens, asset loaders, and customizable levels. We then examined the building blocks of the
Box2D engine and integrated Box2D with the game to create realistic-looking physics. We then added sound effects
and background music to create a very polished game.

Chapter 12 ■ Multiplayer Gameplay

339

After that, we built a complete real-time strategy game called Lost Colony. Building upon ideas from the previous
chapters, we first created a single-player game world with large pannable levels and different types of entities. We
added intelligent movement using pathfinding and steering, combat using states and triggers, and even a game
economy. We then saw how this framework could be used to tell a compelling story over several levels of a
single-player campaign.

Finally, over the last two chapters, we used Node.js and WebSockets to add multiplayer support to our game.
We started by looking at the basics of WebSocket communication and using it to create a multiplayer game lobby.

We then implemented a framework for multiplayer gameplay using the lock-step networking model, which also
compensated for network latency while maintaining game synchronization. We handled connection errors as well as
game completion using triggered events. Finally, we built a chat system to send messages between the players.

If you have been following along, you should now have the knowledge, resources, and confidence to build your
own amazing games in HTML5.

My goal in writing this book was to demystify the process of building complex games in HTML5 and provide you
with everything that you would need to build such games on your own.

If you have questions or feedback, you can reach me using the dedicated page for this book on my website at
www.adityaravishankar.com/pro-html5-games/. I would love to hear about how you used this book as a starting
point for your own projects.

I wish you all the best in your game-programming journey.

http://www.adityaravishankar.com/pro-html5-games/

